
Issues on Building T++, a Tool for Web Application
Development with C++

Antonio Soares de Azevedo Terceiro
terceiro@im.ufba.br

Departamento de Ciência da Computação.
Instituto de Matemática – Universidade Federal da Bahia.

Campus de Ondina – Av. Ademar de Barros, Ondina – 40170-110.
Salvador, Bahia, Brazil

ABSTRACT
As the demand for web applications grows, so does the demand for
tools that support them. As a general rule, such tools extend gen-
eral purpose programming languages, like Servlets/JSP [2] does for
Java [4], or define their own programming language, like PHP [3].
But there is no established engine for web applications written with
C++. This work presents technical challenges that were faced when
developing T++, an engine that supports web application develop-
ment with C++.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and Fea-
tures—Frameworks, Polymorphism, Concurrent programming struc-
tures, Classe sand objects

General Terms
Design, Languages

Keywords
Web Application Development, C++, Object Orientation

1. INTRODUCTION
The demand for web applications is getting more and more in-

tense. They require less resources from clients, since business logic
resides in application servers. This characteristic also facilitates ap-
plication upgrades: they can be done simply by replacing the code
that resides in the application server.

Two kinds of tools have been used for web application develop-
ment: programming languages designed specifically for web appli-
cations, like PHP [3]; and extensions of general purpose program-
ming languages, like Servlets/JSP [2], a Java [4] extension. The
latter – general purpose programming language extensions – can be
used to port applications originally designed for desktop systems to
the web environment.

The C++ language [9] has been used in the development of many
types of applications, from simple tools to complex information
systems, including scientific and industrial applications. However,
up until now, there is no established engine for web application de-
velopment in C++. The lack of such a tool complicates the devel-
opment of new C++ applications for the web environment; more-
over, it hampers the deployment of a solid bulk of C++ applications
on the web. This work briefly presents T++, an engine designed for
running web applications written in C++. T++ comprises two parts:

Copyright is held by the author/owner.
OOPSLA’03, October 26–30, 2003, Anaheim, California, USA.
ACM 1-58113-751-6/03/0010.

(1) user requests document
(7) generated content

web
server

T++ engine

filesystem

(3) maps requested document to an object in memory.
(4) (re)compiles and (re)loads the object, if necessary.
(5) forwards the request processing to object.
(6) gets the content generated by object.

user

source documents

Object Object...

(1) 

(7) 
(2) forwards request

to T++

Figure 1: The processing of a request to a T++ document

a programming language that works as an interface for web appli-
cation development in C++, and an execution engine. In the present
work we focus on the execution engine implementation, while as-
pects related to the programming language interface are detailed
in [5]. Specially, we discuss some challenging issues regarding
object-oriented implementation in C++, that have been subject of
research during T++ development.

2. TOOL DESCRIPTION
T++ is a tool for web application development in C++. It is free

software, licensed under the GNU General Public License [1]. T++
comprises a programming language and an execution engine. Run-
ning T++ requires a GNU/Linux system, an Apache web server,
and GNU Compiler Collection (gcc) with support to C++.

Figure 1 shows a high-level representation of the behavior of a
T++ application. From the users’ point of view, T++ documents
are ordinary ones and are available for users request through their
web browsers (1). Users send HTTP requests, and receive arbitrary
content as result.

The web server forwards the request to the T++ engine (2). The
T++ engine, then, maps the requested document to an object in
memory (3). If it is is necessary, this object is (re)built (4) before it
is used to process the request (5). Finally, output generated by this
object (6), often in HTML format, is sent back to the user (7).

The T++ programming language supports writing T++ docu-
ments, mixing up static content - often HTML code – and C++
statements and expressions. C++ code is embedded in special lan-
guage blocks, surrounded by special delimiters. There are blocks
for code execution, expression evaluation and others.

3. TECHNICAL ASPECTS
C++ code is compiled into native code, unlike other languages

commonly used for web application development. Java, for in-
stance, is compiled into intermediate code, while PHP is purely
interpreted (but there are optional features for caching precompiled



intermediate code).
Restrictions related to working with native code, and the absence

of a virtual machine to support portability raise several issues that
must be handled when developing a tool like T++. In the next sub-
sections, we discuss some important issues and describe the pro-
posed solutions to deal with them.

3.1 Automatic C++ source code generation and
compilation

The objects shown in figure 1 are dynamically created, based on
T++ documents that contain static content (usually HTML code),
C++ statements, and other types of C++ code (classes, methods,
and preprocessor directive declarations, for example). Their trans-
lation mixes both a template skeleton and the content read from
the source document, creating a class that represents the T++ doc-
ument.

The generated class extends an abstract Page class, which pro-
vides the standard interface for T++ documents. The translated
content generates the body of a method called service() in the tar-
get class, for answering users’ requests.

After the class is generated, it is compiled into a shared library
(.so in UNIX systems), which will contain the class definition and
other resources required for dynamic loading.

3.2 Dynamic class loading
T++ needs a dynamic loading mechanism, because users can

change document source code after T++ and web server are al-
ready running, and restarting web server at each document update
is a very bad idea. In this case, the class has to be generated once
again, recompiled, and reloaded in order to make the objects in
memory correspond to the code in source documents. Since C++ is
compiled, dynamic loading of classes is not as easy to implement
as it could be in interpreted or even semi-interpreted programming
languages.

T++ dynamic loading mechanism is based on a technique for dy-
namic class loading in C++ proposed by Norton [8]. This technique
is presented below.

Each class is compiled into its own shared library. Native library
calls are used to load object code from the shared library file and to
get pointers to named symbols inside the module loaded.

In order to process the request for a document, T++ needs to
get an instance of the corresponding class, defined in the shared
library. However, the only available information is that such class
is a subclass of the Page class. Furthermore, it is not possible
to refer to types at runtime in C++. These restrictions lead to the
following implementation:

� The generated class extends the Page class, that defines the
standard interface that all document classes must conform to.

� The generated source file has a public function, with a prede-
fined name, let us say, getInstance(), that returns a pointer to
an instance of the class, implementing the Singleton design
pattern.

� After loading the library, the dynamic loading mechanism
gets a pointer to getInstance(), and calls the function. The
returned pointer is then used to forward the request to the
object it points to.

3.3 Shared memory allocation
Web servers are designed to be robust and scalable, since they

can host applications used by hundred, or even thousands of users.

To achieve these requirements, web servers are by nature multipro-
grammed: the main web server has several child processes that deal
with users requests.

Document instances must be shared between all server’s subpro-
cesses, so that all users will be served by the same instance of the
class corresponding to the requested document. Another reason for
sharing unique instances between subprocesses, is that application
programmers may wish to keep information between successive re-
quests for some document in the document’s object internal state.
These requirements would pose unnecessary additional complexity
if there were several instances of each document in memory.

To implement such functionality, we must:
� Provide a shared memory allocation mechanism, and some

means to instantiate objects in shared memory.
� Provide a synchronization mechanism, since there will be a

lot of race conditions using unique instances, specially if they
keep internal state between requests.

� Provide a programming library for using shared memory, like
shared memory versions of C++ containers and shared mem-
ory allocation operations.

An interesting approach for memory management was proposed
by Meyers [7], using memory heaps and overloading C++’s new
and delete operators. A technique that can be used for attaching
this approach to C++ standard template library containers, redefin-
ing their memory allocation strategy, was described by Austern [6].
In T++, the shared memory allocation problem is solved by com-
bining these two techniques, wrapping shared memory allocation
with memory heaps and defining C++ allocators that are used when
collections of objects are needed.

4. CONCLUSIONS
T++ is a tool that helps web application development, either

for creating new applications from scratch, or for reusing existing
C++ source code for providing a web interface for existing, con-
ventional, applications. T++ represents an important contribution,
since, as far as we know, there is no established engine for web
application development in C++.

The reported design and implementation issues are interesting by
themselves, and putting them to work together has been really chal-
lenging. The resulting knowledge will certainly benefit the design
of other types of applications that have some requirements in com-
mon with a web application server mechanism, like on demand plu-
gin loading mechanisms, component architectures with dynamic
component loading, memory sharing components, among others.

Further information about T++ can be found at [5].

5. REFERENCES
[1] The GNU general public license.

http://www.gnu.org/licenses/gpl.html.
[2] Javaserver pages technology.

http://java.sun.com/products/jsp.
[3] PHP Hypertext Preprocessor. http://www.php.net.
[4] The source for Java technology. http://java.sun.com.
[5] T++ website. http://tplusplus.sourceforge.net.
[6] M. Austern. What are Allocators good for? The C/C++ Users

Journal, Dec. 2002.
[7] N. C. Mayers. Memory management in C++. C++ report,

July 1993.
[8] J. Norton. Dynamic class loading for C++ on Linux. Linux

Journal, May 2000.
[9] B. Stroustrup. The C++ programming language.

http://www.research.att.com/˜bs/C++.html.


